Wow this is such a gift for humanity.
Hellouuu i dont see much excitement about this release…, so i guess more info is needed to know how big this is:
More about the importance of Bone marrow:
Bone marrow is a spongy substance found in the center of the bones. It manufactures bone marrow stem cells and other substances, which in turn produce blood cells. Each type of blood cell made by the bone marrow has an important job.
-
Red blood cells carry oxygen to tissues in the body.
-
Platelets stop bleeding by helping blood clot.
-
White blood cells fight infections.
White Blood Cells
Three very important types of white blood cells are essential to the proper functioning of the body’s immune system, which fights infection:
-
Neutrophils and Macrophages — These white blood cells fight bacterial and fungal infections by “eating” germs
-
Lymphocytes — These white blood cells fight bacterial, viral and fungal infections. T lymphocytes, also called T cells, attack viruses and other germs. T cells from the donor also can attack the recipient resulting in a reaction called graft versus host disease. T cells from the recipient can reject the donor bone marrow cell resulting in graft failure. B lymphocytes make antibodies which help destroy germs in our body.
Many people with blood cancers, such as leukemia and lymphoma, sickle cell anemia, and other life threatening conditions rely on bone marrow or cord blood transplants to survive.
People need healthy bone marrow and blood cells to live. When a condition or disease affects bone marrow so that it can no longer function effectively, a marrow or cord blood transplant could be the best treatment option. For some people, it may be the only option.
Certain conditions may trigger additional production of blood cells. This may happen when the oxygen content of body tissues is low, if there is loss of blood or anemia, or if the number of red blood cells decreases. If these things happen, the kidneys produce and release erythropoietin, which is a hormone that stimulates bone marrow to produce more red blood cells.
Bone marrow also produces and releases more white blood cells in response to infections and more platelets in response to bleeding. If a person experiences serious blood loss, yellow bone marrow can activate and transform into red bone marrow.
Healthy bone marrow is important for a range of systems and activities.
Circulatory system
The circulatory system touches every organ and system in the body. It involves a number of different cells with a variety of functions. Red blood cells transport oxygen to cells and tissues, platelets travel in the blood to help clotting after injury, and white blood cells travel to sites of infection or injury.
Hemoglobin
Hemoglobin is the protein in red blood cells that gives them their color. It collects oxygen in the lungs, transports it in the red blood cells, and releases oxygen to tissues such as the heart, muscles, and brain. Hemoglobin also removes carbon dioxide (CO2), which is a waste product of respiration, and sends it back to the lungs for exhalation.
Iron
Iron is an important nutrient for human physiology. It combines with protein to make the hemoglobin in red blood cells and is essential for producing red blood cells (erythropoiesis). The body stores iron in the liver, spleen, and bone marrow. Most of the iron a person needs each day for making hemoglobin comes from the recycling of old red blood cells.
Red blood cells
The production of red blood cells is called erythropoiesis. It takes about 7 days for a committed stem cell to mature into a fully functional red blood cell. As red blood cells age, they become less active and more fragile.
White blood cells called macrophages remove aging red cells in a process known as phagocytosis. The contents of these cells are released into the blood. The iron released in this process travels either to bone marrow for the production of new red blood cells or to the liver or other tissues for storage.
Typically, the body replaces around 1% of its total red blood cell count every day. In a healthy person, this means that the body produces around 200 billion red blood cells each day.
White blood cells
Bone marrow produces many types of white blood cells. These are necessary for a healthy immune system. They prevent and fight infections.
The main types of white blood cells, or leukocytes, are as follows.
Lymphocytes
Lymphocytes are produced in bone marrow. They make natural antibodies to fight infection due to viruses that enter the body through the nose, mouth, or another mucous membrane or through cuts and grazes. Specific cells recognize the presence of invaders (antigens) that enter the body and send a signal to other cells to attack them.
The number of lymphocytes increases in response to these invasions. There are two major types of lymphocytes: B and T lymphocytes.
Monocytes
Monocytes are produced in bone marrow. Mature monocytes have a life expectancy in the blood of only 3–8 hours, but when they move into the tissues, they mature into larger cells called macrophages.
Macrophages can survive in the tissues for long periods of time, where they engulf and destroy bacteria, some fungi, dead cells, and other material that is foreign to the body.
Granulocytes
“Granulocytes” is the collective name given to three types of white blood cells: neutrophils, eosinophils, and basophils. The development of a granulocyte may take 2 weeks, but this time reduces when there is an increased threat, such as a bacterial infection.
Bone marrow stores a large reserve of mature granulocytes. For every granulocyte circulating in the blood, there may be 50–100 cells waiting in the bone marrow to be released into the bloodstream. As a result, half the granulocytes in the bloodstream can be available to actively fight an infection in the body within 7 hours of it detecting one.
Once a granulocyte has left the blood, it does not usually return. A granulocyte may survive in the tissues for up to 4–5 days, depending on the conditions, but it can only survive for a few hours in circulating blood.
Neutrophils
Neutrophils are the most common type of granulocyte. They can attack and destroy bacteria and viruses.
Eosinophils
Eosinophils are involved in the fight against many types of parasitic infections and against the larvae of parasitic worms and other organisms. They are also involved in some allergic reactions.
Basophils
Basophils are the least common of the white blood cells. They respond to various allergens that cause the release of histamines, heparin, and other substances.
Heparin is an anticoagulant. It prevents blood from clotting. Histamines are vasodilators that cause irritation and inflammation. Releasing these substances makes a pathogen more permeable and allows for white blood cells and proteins to enter the tissues to engage the pathogen.
The irritation and inflammation in tissues that allergens affect are parts of the reaction associated with hay fever, some forms of asthma, hives, and, in its most serious form, anaphylactic shock.
Platelets
Bone marrow produces platelets in a process known as thrombopoiesis. Platelets are necessary for blood to coagulate and for clots to form in order to stop bleeding.
Sudden blood loss triggers platelet activity at the site of an injury or wound. Here, the platelets clump together and combine with other substances to form fibrin. Fibrin has a thread-like structure and forms an external scab or clot.
Platelet deficiency causes the body to bruise and bleed more easily. Blood may not clot well at an open wound, and there may be a higher risk of internal bleeding if the platelet count is very low.
Lymphatic system
The lymphatic system consists of lymphatic organs such as bone marrow, the tonsils, the thymus, the spleen, and lymph nodes.
All lymphocytes develop in bone marrow from immature cells called stem cells. Lymphocytes that mature in the thymus gland (behind the breastbone) are called T cells. Those that mature in bone marrow or the lymphatic organs are called B cells.
Immune system
The immune system protects the body from disease. It kills unwanted microorganisms such as bacteria and viruses that may invade the body.
(Taken from www.medicalnewstoday.com)